- Get link
- X
- Other Apps
Here's a few more bits i was able to pull from the past, still pulsating, throbbing with life, calling us back.
j
TUESDAY, JULY 14, 2009
Dylan, Beatles, Grateful Dead, Urantia, Tao te Ching, Timothy Leary, Ram Dass, Firesign Theatre, Illuminati, StarTrek, Hitchhikers Guide to the Galaxy
THURSDAY, JULY 9, 2009
Unified field theory
In physics, a unified field theory is a type of field theory that allows all of the fundamental forces between elementary particles to be written in terms of a single field. There is no accepted unified field theory yet, and this remains an open line of research. The term was coined by Albert Einstein who attempted to unify the general theory of relativity with electromagnetism. A Theory of Everything is closely related to unified field theory, but differs by not requiring the basis of nature to be fields, and also attempts to explain all physical constants of nature.
This article describes unified field theory as it is currently understood in connection with quantum theory. Earlier attempts based on classical physics are described in the article on classical unified field theories.
There may be no a priori reason why the correct description of nature has to be a unified field theory; however, this goal has led to a great deal of progress in modern theoretical physics and continues to motivate research. Unified field theory is only one possible approach to unification of physics.
According to the current understanding of physics, forces between objects (e.g. gravitation) are not transmitted directly between the two objects, but instead go through intermediary entities called fields. All four of the known fundamental forces are mediated by fields, which in the Standard Model of particle physics result from exchange of bosons (integral-spin particles). Specifically the four interactions to be unified are (from strongest to weakest):
1. Strong nuclear interaction: the interaction responsible for holding quarks together to form neutrons and protons, and holding neutrons and protons together to form nuclei. The exchange particle that mediates this force is the gluon.
2. Electromagnetic interaction: the familiar interaction that acts on electrically charged particles. The photon is the exchange particle for this force.
3. Weak nuclear interaction: a repulsive short-range interaction responsible for radioactivity, that acts on electrons, neutrinos and quarks. It is governed by the W and Z bosons.
4. Gravitational interaction: a long-range attractive interaction that acts on all particles with mass. The postulated exchange particle has been named the graviton.
Modern unified field theory attempts to bring these four force-mediating fields together into a single framework. Quantum theory seems to limit any deterministic theory's descriptive power (in simple terms, no theory can predict events more accurately than allowed by the Planck constant).
This article describes unified field theory as it is currently understood in connection with quantum theory. Earlier attempts based on classical physics are described in the article on classical unified field theories.
There may be no a priori reason why the correct description of nature has to be a unified field theory; however, this goal has led to a great deal of progress in modern theoretical physics and continues to motivate research. Unified field theory is only one possible approach to unification of physics.
According to the current understanding of physics, forces between objects (e.g. gravitation) are not transmitted directly between the two objects, but instead go through intermediary entities called fields. All four of the known fundamental forces are mediated by fields, which in the Standard Model of particle physics result from exchange of bosons (integral-spin particles). Specifically the four interactions to be unified are (from strongest to weakest):
1. Strong nuclear interaction: the interaction responsible for holding quarks together to form neutrons and protons, and holding neutrons and protons together to form nuclei. The exchange particle that mediates this force is the gluon.
2. Electromagnetic interaction: the familiar interaction that acts on electrically charged particles. The photon is the exchange particle for this force.
3. Weak nuclear interaction: a repulsive short-range interaction responsible for radioactivity, that acts on electrons, neutrinos and quarks. It is governed by the W and Z bosons.
4. Gravitational interaction: a long-range attractive interaction that acts on all particles with mass. The postulated exchange particle has been named the graviton.
Modern unified field theory attempts to bring these four force-mediating fields together into a single framework. Quantum theory seems to limit any deterministic theory's descriptive power (in simple terms, no theory can predict events more accurately than allowed by the Planck constant).
TUESDAY, JULY 7, 2009
A BRIEF HISTORY OF TIME
A BRIEF HISTORY OF TIME
Stephen W. Hawking
Our Picture of the Universe
Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory. On the other hand, you can disprove a theory by finding even a single observation that disagrees with the predictions of the theory... Each time new experiments are observed to agree with the predictions the theory survives, and our confidence in it is increased; but if ever a new observation is found to disagree, we have to abandon or modify the theory.
Today scientists describe the universe in terms of two basic partial theories - the general theory of relativity and quantum mechanics... The general theory of relativity describes the force of gravity and the large-scale structure of the universe, that is, the structure on scales from only a few miles to as large as a million million million million (1 with twenty-four zeros after it) miles, the size of the observable universe. Quantum mechanics, on the other hands, deals with phenomena on extremely small scales, such as a millionth of a millionth of an inch. Unfortunately, however, these two theories are known to be inconsistent with each other - they cannot both be correct.
The discovery of a complete unified theory, therefore, may not aid the survival of our species. It may not even affect our life-style. But ever since the dawn of civilization, people have not been content to see events as unconnected and inexplicable. They have craved an understanding of the underlying order in the world. Today we still yearn to know why we are here and where we came from. Humanity's deepest desire for knowledge is justification enough for our continuing quest. And our goal is nothing less than a complete description of the universe we live in.
Stephen W. Hawking
Our Picture of the Universe
Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory. On the other hand, you can disprove a theory by finding even a single observation that disagrees with the predictions of the theory... Each time new experiments are observed to agree with the predictions the theory survives, and our confidence in it is increased; but if ever a new observation is found to disagree, we have to abandon or modify the theory.
Today scientists describe the universe in terms of two basic partial theories - the general theory of relativity and quantum mechanics... The general theory of relativity describes the force of gravity and the large-scale structure of the universe, that is, the structure on scales from only a few miles to as large as a million million million million (1 with twenty-four zeros after it) miles, the size of the observable universe. Quantum mechanics, on the other hands, deals with phenomena on extremely small scales, such as a millionth of a millionth of an inch. Unfortunately, however, these two theories are known to be inconsistent with each other - they cannot both be correct.
The discovery of a complete unified theory, therefore, may not aid the survival of our species. It may not even affect our life-style. But ever since the dawn of civilization, people have not been content to see events as unconnected and inexplicable. They have craved an understanding of the underlying order in the world. Today we still yearn to know why we are here and where we came from. Humanity's deepest desire for knowledge is justification enough for our continuing quest. And our goal is nothing less than a complete description of the universe we live in.
- Get link
- X
- Other Apps
Comments
Post a Comment